CO₂ Car Design and Manufacturing

TABLE OF CONTENTS

Section 1 - CO₂ Car Design using Pro/Desktop Version 8

1-1 - Creating a Directory to SAVE Your Files	6
1-2 - Setting up your Drawing Area	6
1-3 - Creating the Axle Supports	9
1-4 - Creating the Body Design Profiles	11
1-5 - Lofting the Design Profiles	14
1-6 - Attaching the Rear Axle Support to the Body	16
1-7 - Adding Rounds and Fillets to your Design	17
1-8 - Creating the CO2 Cartridge Cavity	19
1-9 - Adding a Reference Plate	20
1-10 - Saving Design as an STL File	21
1-11-Creating a CO2 Car of your own Design	22

Section 2 - Converting a Stereo Lithography (.stl) File to a CNC Program

2-1 - Starting the QuickCam Software	. 24
2-2 - Manipulating the VIEW	25
2-3 - Orientating the Model	26
2-4 - Setting the Cutting Depth	26
2-5 - Setting the Billet Size	27
2-6 - Setting the Model Size	27
2-7 - Setting the Model Position	27
2-8 - Setting the Boundary	28
2-9 - Setting Up Tools	28
2-10 - Adding Machining Plans	29
2-11 - Simulating the Toolpath	30
2-12 - CNC File Output	31

Section 3 - CO, Car Manufacturing using VR Milling V5

3-1 - Starting VR Milling V5	34
3-2 - Loading the CNC File	. 35
3-3 - Selecting and Homing the Real Machine	. 36
3-4 - Move the Machine Head and Fit the Cutting Tool	36
3-5 - Selecting the Work Offsets	. 38
3-6 - Run the Program	39
3-7 - Monitoring the Machining Process	40
3-8 - Creating the CNC File for the Opposite Side	41
3-9 - Drilling Axle Holes	42
3-10 - Rotating the Billet in the CO2 Car/F1 Car Fixture	43
3-11 - Machining the "LEFT" side of the Car Body	43

Section 4 - Teacher Resource Pages

4-1 -Tips and Hints Needed to Successfully Teach this Activity	46
4-2 - Pro/Desktop and CO2 Design Tips	47
4-3 - Moving the Machine Head and Fitting the Cutting Tool	48
4-4 - Installing the CO2/F1 Fixture and Setting Offsets	49
4-5 - Creating a work offset for the CO2/F1 Fixture	49
4-6 - Troubleshooting CO2 Car/F1 Car Setup	53
4-7 - Contact Information and Disclaimer	54

CO₂ Car Design USING Pro/Desktop Version 8

Note: *Click* on the in the upper right corner of the screen to **CLOSE** the *My Documents window*.

<u>1 - 1: Creating a Directory to SAVE Your Files</u>

- 1. To help manage files, you need to create a directory to save your CO2 files.
- 2. *Double-click* on the My Documents folder on your desktop.
- 3. Right-click, select **NEW**, and click on f**older**. Then type in the folder name using the following format ...

<Your Last Name> CO2 files (example: Todd's CO2 files).

- 4. Close the My Documents Window!
- 1 2: Setting up your Drawing Area
 - **1. OPEN** the Pro/Desktop program by selecting **START**, **All Programs** and *clicking* on **Desktop 8.0**.
 - You may need to Maximize the screen by clicking on the middle box in the upper right hand corner of the screen.
 - 3. Set drawing **UNITS** to **METRIC**.

From the drop down menu at the top of your screen, **select TOOLS**, then **click OPTIONS**.

• Select **UNITS** and change to Millimeters and **click OK**.

- 4. Go to the upper left corner of the screen and select **FILE**, then click **OPEN**.
- 5. Select the **CO2 Car Template.des** file from the **My Documents Folder** or other location specified by your instructor.
- 6. Again, **maximize** the screen by *clicking* on the middle box in the upper right hand corner of the screen.
- Before going any further, you MUST use the SAVE COPY AS command and save this file in the DIRECTORY (folder) you just created.
- Save the file using the following format ...
 <Your Last Name> CO2 (example: Todd's CO2).
- 9. Now go back up and select the **FILE** menu, *click* on **CLOSE**.
- 10. Again select the **FILE** Menu, *click* on **OPEN**, select the your CO2 car file and *click* **OPEN**.
- 11. Go to the **BROWSER Menu**, located on the left side of the screen and make sure that **Workplanes** appear, if not select the down arrow and choose workplanes.
- 12. *Click* on the **+** sign in front of the **Base Workplane**, then *click* on the **Construction Lines** sketch icon.
- 13. *Click* on the **View onto Workplane button** located in the **VIEW** menu at the bottom of the screen.

14. Information on the next page will help you better understand workplanes and sketches.

DON'T MISS THESE STEPS ...

Workplanes and Sketches

All objects in your design must be created on a sketch located on a workplane.

If we were to use traditional drafting equipment, a workplane would be like the drawing board and the sketch would be the sheet of paper.

Workplanes are designated with the workplanes icon **E**.

- Workplanes are like drawing boards, and they can have multiple sketches.
- The + symbol in front of a workplane icon means that there sketches created on that workplane.
- To view these sketches you must double-click on the + sign next to the workplane.

Sketches are designated with a pencil icon - No.

- Sketches are like sheets of paper, you can have multiple sketches on a workplane.
- To create or modify an object, it must be placed on the **active sketch** in the design.
- To determine the **active sketch**, look for the **BOLD sketch** in the workplanes browser. **Construction sketch** is the active sketch in the example above.
- To **ACTIVATE a sketch**, *double-click* on the pencil icon located in front of the sketch you wish to activate.
- After *double-clicking* the icon you should see the sketch name highlight or become bold.
- 15. The image below should appear on the screen, if not see your teacher! (*Note: you may need to use the center scroll button on your mouse to zoom in or out.*)

<u>1-3:</u> Creating the Axle Supports

13

 \odot

⊡

 \odot

ے۔ وب

- Double click on the sketch icon in front of Rear Axle Support workplane to activate that sketch. When you have correctly activated the sketch, the workplane text will appear BOLD.
- 2. Notice the RED construction line located in the image below, use it as a guide for locating the center of your axle holes. (*Line may NOT be red on the drawing screen.*)

3. Use the **Circle**, **Rectangle** and/or **Ellipse** tools located in drawing toolbar on the right side of the screen, to create the profile for your rear axle support (*see example below*).

- 4. Make sure that you draw your profile *within the boundaries of the car blank*.
 - Leave some room between left edge of the axle support to the back of the car, and do not go outside the boundary on the bottom of the car blank. *See example above.*

or zoom. • Rotate - hold the center mouse button down and move the mouse. Pan - hold the shift key and the center mouse button down and move the mouse. Troubles drawing a 3.2mm diameter circle? • Zoom - scroll the center mouse wheel to zoom up or down. *Try ZOOMING in closer, The* grid size increases and decreases 6. Zoom in on your rear axle sketch using the center mouse in proportion to the level of zoom wheel. 7. Select the Circle 💽 tool from the drawing toolbar, and draw a 3.2mm circle in the center of the rear axle support for an axle hole. (*See sample to the left*) 🖸 🕅 🌒 🍳 🚈 🗸 🗢 88 1 \odot M 🐢 🖉 8. Select the EXTRUDE PROFILE button 🔊 from the features menu located at the bottom of the screen. Extrude Profile ? Feature name: Extrusion Other Side OK. extrusion 10 🗌 <u>I</u>hin Distance (mm): Cancel 40 Ŧ Thickness (mm): Sketch to use as profile: $\overline{\mathbf{v}}$ Rear Axle Support Above workplane Below workplane Symmetric Add material Symmetric about workplane Subtract material Preview 🔽 Taper angle: 0 Intersect material <u>Calculator</u> 9. Click on the buttons to Add material, Symmetric about

 Click on the buttons to Add material, Symmetric about workplane, and type in a distance NO GREATER than 40mm, then click OK.

5. To better view the drawing you may want to **rotate**, **pan**

- 10. You should now see the image to the left!
- To better view the extrusion you may want to use your rotate, pan or zoom commands. *See example to the right!*

- 11. Now create your front axle support using the same steps above.
 - ACTIVATE the Front Axle Support Sketch and View onto the Workplane!
 - Select the **Circle**, **Rectangle** and/or **Ellipse** tools and draw the support with axle hole.
 - Extrude to desired distance, no greater than 40mm.

12. When completed, **SAVE your design**! Make sure you are saving it in the directory you created earlier in this activity.

1-4: Creating the Body Design Profiles

1. There are SEVEN workplanes already created to help you design your **body profile**. Each workplane has a sketch already created, named Body Profile 1-7.

You'll see those listed on the left side of the screen under the browser window. Let's get Started!

- You will be using the **circle () tool**, located in the drawing tools menu to draw a circular profile on each of the seven sketches.
- You will then use the **Loft Through Profiles** command to create a continuous feature that creates material using multiple profiles.
- The Loft Through Profiles 😽 Loft Through Profiles...

command is located under the **FEATURE** menu located at the top of the screen.

Notice - the left side of the image below is actually the bottom view of the Axle Support!

- 2. In the **Workplanes Browser**, *click* on the + sign in front of **Workplane 1.** ACTIVATE the **Body Profile 1 sketch** *by double-clicking* on the sketch icon **N**.
- 3. "*Click*" on the View onto Workplane button *in the VIEW* menu at the bottom of the screen.
- 4. "*Click*" on the Autoscale button in the VIEW menu at the bottom of the screen to scale and center the design to fit the drawing window.
- 5. Select the circle \bigcirc tool from the drawing tools menu.
 - Move the cursor to the center of the existing circle, "*click and drag*" the cursor straight right until you see the number at the cursor reads **30mm**. *See example to the left*.
- If you make a mistake, select the Delete Line Segment
 tool, located at the bottom of the Drawing Tools toolbar.
- The cursor will look like a pair of scissors >>>, just "click" on the object(s) you wish to delete.
- In the Workplanes Browser, activate the Body Profile 2 sketch by double-clicking on the sketch icon y remember you have to *click* on the + sign in front of Workplane 2, the see the sketch.
 - Again, select the circle 💽 tool from the drawing tools menu.
 - Move the cursor to the center of the existing circles "*click and drag*" the cursor straight right until you see the numbers at the cursor reads **34 mm**. *See example to the left.*

- Using the same steps as above ACTIVATE the Body Profile 3 sketch, under Workplane 3 and *select* the circle tool.
 - Move the cursor to the intersection of left edge of the smallest diameter circle and the horizontal center line, draw a **20mm** diameter circle.
- 8. ACTIVATE **Body Profile 4**, *select* the circle 💽 tool.
 - Move the cursor to the intersection of left edge of the largest diameter circle and the horizontal center line, draw a **18mm** diameter circle.
- 9. ACTIVATE **Body Profile** *5*, *select* the circle 💽 tool.
 - Move the cursor to the intersection of left edge of the 20mm diameter circle and the horizontal center line, draw a **16mm** diameter circle.

10. ACTIVATE **Body Profile 6**, *select* the circle \bigcirc tool.

• Move the cursor to the left along the horizontal center line to the intersection of the two construction lines, draw a **14mm** diameter circle as shown.

11. ACTIVATE **Body Profile** 7, *select* the circle 💽 tool.

• Move the cursor to the left along the horizontal center line until you reach the **center of the axle support**, draw a **11mm** diameter circle as shown.

SAVE YOUR WORK!!!!!

<u>1 - 5: Lofting the Design Profiles</u>

- 1. In the **Workplanes Browser**, *click* on the + sign in front of **Base**. ACTIVATE the **Construction lines sketch** *by double-clicking* on the sketch icon
 - Click on the **View onto Workplane** button 🚁
 - Use the **Autoscale button** 💽 if needed.

- 2. ACTIVATE Body Profile 1 located in workplane 1.
- 🖧 Loft Through Profiles..
- 3. Select the Feature menu at the top of the screen, *click* on the **Loft Through Profiles command.** The window below will appear.

Loft Profiles		? 🛛
<mark>™ 3 •</mark> Feature name: loft 4	Profiles: ✓ Body Profile 1	Move <u>Up</u> OK Move <u>D</u> own
 Add material Subtract material Closed loft 		Preview V Remove Calculator

- 4. Then from the workplanes browser menu, located on the left side of the screen ...
 - click on Body Profile 2
 - then Body Profile 3
 - then Body Profile 4
 - then Body Profile 5
 - then **Body Profile 6**
 - finally **Body Profile 7**

5. Make sure your profiles appear as in the window below.

Loft Profiles		? 🛛
<u>19</u> 3 -	<u>P</u> rofiles: ▼ Body Profile 1	Move Up OK
<u>F</u> eature name: loft 4	✓Body Profile 2 ✓Body Profile 3	Move <u>D</u> own Cancel
• A <u>d</u> d material	✓Body Profile 4 ✓Body Profile 5 ✓Body Profile 6	
Subtract material	Body Profile 7	Preview 🔽
Closed loft		<u>R</u> emove <u>Calculator</u>

- 6. Select the Add Material Button, and *click* OK.
- 7. Your body should some what resemble the design below.

1 - 6: Attaching the Rear Axle Support to the Body

- 1. In the Workplane Browser, ACTIVATE **Sketch 1** in the **Bottom Workplane**.
- Click on the View onto Workplane button and Autoscale or use the zoom and rotate buttons on the mouse if needed.
- 3. Select the **Ellipse** 💿 tool from the Drawing Tools toolbar, and draw an ellipse over the rear axle support as shown.
- 4. Select the **EXTRUDE PROFILE** button *from the* **features menu** located at the bottom of the screen.
- 5. Select **Add Materia**l, **Below the Workplane**, enter a distance of 25mm and *click* **OK**.

Extrude Profile			? 🗙
Eeature name: extrusion 13	Extrusion Distance (mm):		OK Cancel
Sketch to use as profile: sketch 1	Above workplane Below workplane	l h <u>ro</u> kness (mm): 0	
C Subtract material C Intersect material	C Symmetric about workplane		Preview V

- 6. Using the center scroll button on your mouse, **rotate** and **zoom** in on the rear axle support.
 - If you see the image to the left ... you have made a mistake!
 - Select the **Undo command** at the top of the screen.

٩	Pro/	DESK	стор -	New S	essio	on - [To	íd's	<u>502 *]</u>	
Ø	File	Edit	View	Select	Line	Constrai	int F	eature	Assembly
Ø	•	2	8	5 X	ÊÐ	r X	Ŋ	Extrude	Profile

• Again, select the **EXTRUDE PROFILE** button, this time make sure that you checked the **Below the Workplane** button!

7. Your design should resemble the design below ... (*Remember to use your mouse buttons to zoom and rotate.*)

SAVE YOU WORK!

figure 1

figure 2

<u>1 - 7: Adding Rounds and Fillets to your Design</u></u>

- 1. Roll the **center scroll button** on your mouse to zoom in on the rear axle support area as shown in *figure 1*.
- Click on the select face icon if from the select tools toolbar located on the right side of the screen.
 - Select the **face** of the extrusion connecting the rear axle support to the body. *Notice arrow in figure 1.*
 - The face color changes when selected. *See figure 2.*
- 3. From the Features toolbar located at the bottom of your screen select the **Round Edges tool**

4. Enter a radius of 4mm and *click* OK.

figure 3

- 5. The rear of your car design should look like *figure 3*.
- 6. If the window below above appears, the radius you have chose *is to large*. You need to *click* on **redefine**, enter a radius of **3mm** and click **OK**.

7. Using the center scroll button on your mouse, rotate and zoom in on the front axle support area as shown in *figure 4*.

- 8. Use **select edge command** from the **select tools toolbar**, to select the line shown in *figure 4 above*.
- 9. Use the **Round Edges tool** , and create a **4mm** radius. *See figure 5*.

- figure 5
- 10. Do the same for the other side of the front axle support if needed!

🔊 File	Edit	Vie	w	Sel
Ø •	2		ē	6
Features			-]
(none)				Ъ'г
Compone	ents			11
Features				11
Workplar	nes			
i ∰ angle in the second secon	xtrusi	on 1:	3	

<u>1 - 8: Creating the CO2 Cartridge Cavity</u>

- 1. Go the browser drop-down menu and select **workplanes**.
- 2. Go to **Workplane 1** and activate the **CO2 hole sketch**.
- 3. Select the **extrude profile feature** profile feature located in the features toolbar located at the bottom of the screen.

Extrude Profile			? 🔀
Eeature name: extrusion 14 Sketch to use as profile: C02 Hole	Extrusion Distance (mm):	<u> <u> </u> </u>	OK Cancel
 Add material Subtract material Intersect material 	C Below workplane C Symmetric about workplane Tager angle:	₩ Sy <u>m</u> metric	Preview V

- 4. Select **subtract material**, **above the workplane**, a distance of **51mm** and click **OK**.
 - If you receive an error message, select **redefine** and check your settings.
- 5. Make sure your extrusion removes material like the example shown to the left.
- 6. Make any final changes to your car and save your work.
- 7. When finished show your c**ompleted design** to your teacher.

The purpose of the **reference plate** is to locate the **center** of the CO2 cartridge hole and match it up with the machining fixture.

<u>1 - 9: Adding a Reference Plate</u>

- 1. A **Reference Plate** must be added to the CO2 cartridge end of your 3D car design.
 - The reference plate is used to **help locate** the body design in the correct position (datum).
 - This makes it easier to work with the design in the manufacturing part of this activity.
 - If the same reference plane is used on all car designs, machine offsets will only need to be configured once.
- 2. From the workplanes browser, select **Workplane 1**, and ACTIVATE the **Reference Plate** sketch.
- 3. Using the appropriate mouse buttons, **scroll** and **zoom** until this image on the screen looks like the *image to the left*.
- 4. Select the **extrude profile feature** *profile* located in the features toolbar located at the bottom of the screen.

-			<u>- 8 – 8</u>		
Extrude Pr	afile:				2
Eestus name estusion 17 Statch to use Reference P	an polite late 💌	Extraion Distagos (wn): T	F Ibn Trairea	UtherSide	OK. Carcal

- 5. Select **add material**, **below the workplane**, a distance of **1mm** and click **OK**.
- 6. You have now added a **reference plate** to your car design, see image to the left.

- Set the scale to **1**
- Set the chordal tolerance to **0.1**
- Set the output mode to ASCII
- Click OK
- 3. You have just created a **STL file** of your CO2 Car Design which may be used later in the manufacturing of the car.
- 4. Congratulations ... you have successfully designed a complete CO2 Car.

<u>1 - 11:</u>	Creating a CO2 Car of your own Design
1.	At this point you must see your teacher to determine if you will be required to
	 completely design a NEW car. redesign the car you just completed. move on CNC program creation.
2.	If your teacher told you to proceed to CNC program creation, go to the next page.
3.	If your teacher told you that you need to redign your existing CO2 Car, OPEN your Pro/D file and make the changes that the two of you discussed.
	• Upon completion, get your teachers approval of the design, create an STL file and proceed to the next page.
4.	If your teacher told you that you need to create a NEW CO2 Car to a set of limitations, you will need to
	• get the specifications and limitations from your teacher.
	• generate some different deign ideas.
	 when ready OPEN Pro/D, open the CO2 Car tem- plate and begin creating your masterpiece!
	 upon completion, get your teachers approval of the design, create an STL file and proceed to the next page.
·	

Converting a Pro/Desktop Stereo Lithography (.stl) File to a CNC Program

3. The image on the computer screen should look like the example shown below.

- 4. In the bottom right corner of the screen, there is a box that gives the dimensions of your Model.
- 5. If the dimensions on the screen **DON'T** match those shown below, there is a problem with your 3D design, and see your teacher NOW!

The "Orientate Model" screen allows you to change the orientation of the 3D design within the CNC machine.

2 - 3: Orientating the Model

- 1. Because you used the CO2 Car Template to create your CO2 Car Design, your car will import in the correct orientation.
 - X=0, Y=0, Z=0
- 2. Use the **mouse buttons** to orient the model as shown below.

- 3. Notice the LARGE RED ARROW, this represents the direction of the cutting tool.
- 4. *Click* the **NEXT** Next> button to move to the next screen.
- 2 4: Setting the Cutting Depth
 - 1. The default option for this screen is set to cut to the centre of the model.
 - The Z cut depth will read -21.000
 - 2. Because we are using a radius cutter for machining, we are going to **lower this value** by the radius of the cutter to prevent a ridge being left around the car.
 - 3. Set the new value to **-24.000**.
 - 4. *Click* the **NEXT** Next> button to move to the next screen.

The "Set Cut Depth" screen allows you to determine how far into the model to cut.

- 4. This change will allow for the room needed to hold the billet in the machining fixture.
- 5. Click the **NEXT** Next > button to move to the next screen.

2 - 8: Setting the Boundary

- 1. No changes should be made in this screen, make sure that **model** is selected and that **X** and **Y** are set to **0.000**.
- 2. *Click* the **NEXT** Next > button to move to the next screen.

2 - 9: Setting Up Tools

1. Select the **Ball Nose 1/4**" cutter from the tool library, see below.

SETUP TOOLS				
0	8 8			
No.	Description	Diam.	Туре	
1	Ball Nose 1/4''	6.350	Ball Nose	
2	Ball Nose 1/8''	3.175	Ball Nose	
3	Slot Mill 3.2mm	3.200	Slot Mill	
4	Slot Mill 6.35mm	6.350	Slot Mill	
5	Slot Mill 12.7mm	12.700	Slot Mill	
6	Engraving .5mm	0.500	Engraving	
7	V-Groove - 90 degree 14.3mm	14.300	Tapered	
8		0.000	UnDefined	

- If this tool does not appear in the library, see your teacher.
- Do NOT make any changes to the tool library without teacher supervision.
- 2. *Click* the **NEXT** Next> button to move to the next screen.

2 - 10: Adding Machining Plans			
1. <i>Click</i> on ADD Add Machining Plan.			
2. Select Raster Finishing Raster Finishing .			
Roughing Planse			
Area Clearance Horizontal Area Clear Raster Roughing			
Finishing Planss			
Corner Offset Passes Raster Finishing Constant Stepover			
Spiral Milling Passes Raster + Waterline Base Raster			
 3. Edit the plan parameters as shown below Step over - set at 20.00% Feed Rate - set at 5000.00 Spindle Speed - set at 23000 Raster Angle - set at 270 (90 for QuickCam 3D users) 			
Edit parameters for this plan			
Description: Haster Finishing			
Description: Haster Finishing Tool Data Machining Boundary Task Minimum Minimum			
Description: Haster Finishing Tool Data Machining Boundary Tool: T:1 - D:6.350mm - Ball Nose 1/4" X 5.500 299.500			
Tool Data Machining Boundary Tool: T:1 - D:6.350mm - Ball Nose 1/4" Minimum Maximum Step Over: 1.270 \$ 20.000 \$ Y 0.000 \$ 80.000 \$			
Tool Data Machining Boundary Tool: T:1 - D:6.350mm - Ball Nose 1/4" Minimum Maximum Step Over: 1.270 1.2			
Tool Tool Data Machining Boundary Tool: T:1 - D:6.350mm - Ball Nose 1/4" Minimum Maximum Step Over: 1.270 \$ 20.000 \$ V 0.000 80.000 \$ Step Down: 12.000 \$ Adaptive Stepdown			
Tool: Tool: Tit - D:6.350mm - Ball Nose 1/4" Machining Boundary Step Over: 1.270 Image: Step Over: Minimum Maximum V Create vertical step overs Image: Step Down: 12.000 Image: Spindle Speed: 23000 Image: Step Down: Image: Spindle Speed: 23000 Image: Step Down: Image: Spindle Speed: Step Down: Image: Spindle Speed: Image: Spindle Spind			
Tool: Tool Data Machining Boundary Tool: T.1 - D:6.350mm - Ball Nose 1/4" Minimum Maximum Step Over: 1.270 minima 299.500 1299.500 V Create vertical step overs % 299.500 1200 Step Down: 12.000 Adaptive Stepdown 80.000 12 Feedrate: 5000.000 Spindle Speed: 23000 Set Boundary to Billet Model Custom General Machining			
Tool Data Machining Boundary Tool: T:1 - D:6.350mm - Ball Nose 1/4" Minimum Maximum Step Over: 1.270 mm 20.000 299.500 299.500 V 0.000 mm 20.000 2 299.500 2 V 0.000 mm 2.000 2 2.4.000 0.000 2 Step Down: 12.000 Image: Adaptive Stepdown Set Boundary to Billet Model Custom Feedrate: 5000.000 Spindle Speed: 23000 Set Boundary to Billet Model Custom Safe Height: 5.000 Raster Angle: 270 Cut Direction One Way			
Tool Data Machining Boundary Tool: T:1 - D:6.350mm - Ball Nose 1/4" Minimum Maximum Step Dver: 1.270 mm 20.000 % 299.500 9 V 0.000 % 299.500 80.000 % V 0.000 % 24.000 0.000 % Step Down: 12.000 V Adaptive Stepdown 8et Boundary to Billet Model Custom Feedrate: 5000.000 Spindle Speed: 23000 8t Boundary to Billet Model Custom Safe Height: 5.000 Raster Angle: 270 Cut Direction One Way 0 ne Way 8t Down Mill Use contact area only Parallel pencil count: 5 Down Mill Down Mill			
Tool Data Machining Boundary Minimum Maximum Step Dver: 1.270 mm 20.000 2 Create vertical step overs 20.000 2 299.500 2 Step Down: 12.000 2 24.000 0.000 80.000 Create vertical step overs 2000 2 -24.000 0.000 80.000 Step Down: 12.000 Adaptive Stepdown Set Boundary to Billet Model Custom General M achining Cut Direction One Way Finishing Amount: 0.000 Raster Angle: 270 Cut Direction Drew Way Barp In Radius: 3.000 Billet One Way Billet One Way Billet One Way Billet One Way Billet Down Mill Down Mill Down Mill Down Mill Down Mill Dyname			

4. When changes have been made, click **OK** and the **tool paths** will be calculated.

4. After you *clicked* OK, you will have to wait a minute or so while the software **calculates the toolpaths**.

5. When the t**oolpaths have been calculated**, you will see them as lines on the model. *See below!*

<u>2 - 12: CNC</u>	<u>C File Oı</u>	utput	
1. Change the Datum Positions as follows			
• X • Y • Z	X = 0 Y = 40mn Z = -21mn	n m	
	đ	NG FILE OUTPUT	
		Datum Position: X 0.000 € Y 40.000 €	
	Post Proc	Z -21.000 🚔	
	DENFOR	RD (METRIC) - Milling	
2. This cartr	will mo [.] idge hol	ve the DATUM to the center of the CO e in the Balsa wood billet.	02
3. Mak the I	e sure D Post Proc	ENFORD (METRIC) - Milling is select cessor.	ted as
4. Selec	t POST	PROCESS.	
5. Whe Files	en the Sa 5 folder a	ve As window appears, select Your C and save using the following format	O2
Your Last	st Name>	CO2 Right Side (example: Todd's CO2 Right S	ide)
	Save As Save In: 껕	Taddfa 002 Files 🕜 🖓 📴 🖽 •	
	Re name: Save as type:	Toddfa CO2 Pight Side Seve DENFORD (METRIC) - Miling Files (*Inc)	
	CATE		

6. *Click* **SAVE** ... **VR Milling** will automatically open. <u>See your teacher!</u>

DON'T FORGET THIS ... ____

© Prchal & Todd, 2006

CO₂ Car Manufacturing using VR Milling V5

	<u>3 - 2: Loading the CNC File</u>		
	1. Click on the FILE menu at the top left of the screen		
	• Select OPEN .		
	 Browse for the file your save earlier in QuickCam, should be saved in Your CO2 Files directory! Remember you saved it as <your last="" name=""> CO2</your> 		
	Right Side. (<i>Example: Todd</i> 's CO2 Right Side)		
	• The file will have the extension letters ".fnc".		
	Open CNC File		
	Look p: D Todds CO2 Res		
	File game: Todd's CO2 Right Side Qpen Files of type: Famue Miler File ("fine) Cancel		
	• When you have found and selected the file, <i>click</i> OPEN .		
	2. The contents of the CNC file will now be displayed in the EDITOR window. <i>See below!</i>		
Todd's CO2 Right Side.fnc			
(File: Todd's CO2 Right Side (Z Datum is -21.000 from top (********* QuickCAM Configura (Orientation X:0.000 Y:90.00	e.fnc p of Billet ! ation ******* 00 Z:0.000		
(Cutplane Depth:-24.000 (Billet Size X:305.000 Y:80.0 (Model Size X:294.000	000 Z:42.000		

This is next step is very important for you to understand, after reading through the information below, see your teacher for a quick review!

- 4. Feed Rate is controlled by the **Jog Feed Control Knob**.
 - The value is shown in the **readout** below the control knob.
 - To change the **Feed Rate**, *click on and drag* the Jog Feed Control Knob **up** and **down**.

- Watch the feed rate values change as you move the mouse up or down!
- 5. The **four cursor (arrow)** keys and the **Page Up** and **Page Down** keys on the keyboard are used to control the *X*, **Y** and **Z** axis.

- → moves the tool **RIGHT** on the **X** axis.
- **↑** moves the tool **BACKWARD** on the **Y** axis.
- **V** moves the tool **FORWARD** on the **Y** axis.
- **Page Up** moves the tool **UP** on the **Z** axis.
- Page Down moves the tool DOWN on the Y axis.
- Take 5 minutes to practice jogging the tool around the work area in **Continuous** and **Incremental** modes.
- Also practice changing the **jog feed rate**.
- It is important that you feel comfortable with these controls before moving on!

3 - 5: Selecting the Work Offsets

Offsets are the distances the cutting tool needs to travel, from it's **HOME** *position to the point from which the program starts in X*, *Y and Z*.

- 1. The offsets for the CO2 Car/F1 Car have already been set for you by your teacher.
- 2. You will just have to select the **correct offset** and ACTIVATE it.
 - *Click* on the **Tool and Offset Editor** button located at the bottom left of the screen.

3. When the window below appears, select the **CO2 Car/F1 Car Fixture**, then *click* ACTIVATE.

4. The window below will now appear, the offsets you see below *will be different* that those currently in your tool editor window!

Your teacher will have the correct offsets for you to see posted above or around the router, if not see your teacher now!

Tool is to CLOSE to billet, Jog the tool **up** to clear the billet!

Control Panel			
Machir	ne Position	M: 5	
TX	0 000	T:	
1 0	0.000	H1: 0.000	
I Y	0.000	D1: 6.350	
ΤZ	0.000	Spindle: 🌞	
Home Jog	Auto MDI	0	
) 💎	X S N	

CLOSE the Tool and Offset Editor by *clicking* on the
 Tool and Offset Editor button located at the bottom of

Tool and Offset Editor button located at the bottom of the screen.

3 - 6: Run the Program

- 1. Before **RUNNING** the program HOME ALL the axis, and make sure the cutting tool is clear of the billet.
 - If NOT, use the **cursor**, **page up** and **page down** keys to move the cutter clear of the billet!
- 2. Select the **HOME TAB** Home in the control panel.
- 3. *Click* on **HOME ALL** , wait for the homing process to finish.
- 4. Click on the AUTO TAB Auto.
- 5. Select TURBO MODE , make sure the little light is green and not red.
 - This will greatly reduce large 3D object machining times.
 - It will usually make the machine perform with a smoother motion.
- 6. The program is now ready to **RUN**.
 - Do you have a billet installed in the CO2 Car/F1 Car fixture.
 - Is the 1/4" Ball End mill installed?
- 7. If ALL setups are **OK**, **go** to the **File Control** toolbar located at the bottom of the screen.

- 8. *Click* on the **STOP** button, followed by the **REWIND W** button.
 - This will ensure that the program starts from the beginning.
 - *DO NOT click* **PLAY** until you read through the next section <u>3-7: Monitoring the Machining Process</u>!
- 9. *Click* on the **PLAY button** to start the program.
 - The program will begin to run.
- 10. A message will appear asking you to change to tool number 1, *you should have already installed the* 1/4" *Ball End mill.*

3-7: Monitoring the Machining Process

- 1. It's time to set back, LOOK and LISTEN ...
 - Keep your hands by the red **EMERGENCY STOP** button at all times.
 - Make sure that the tool does not run into the CO2 Car/F1 Car Fixture.
 - Listen to the *sound of the machine,* if the cutter is laboring, you may want to use **feed rate override knob** on the front of the machine
 - If you see extreme vibration you make want to reduce the feed rate.

TIP:

- To gain more control you may want to use the FEED RATE OVERRIDE KNOB on the front of the router to reduce the feed rate when first starting a program.
- After you are happy with the way to tool is cutting you may increase the Feed Rate to 100%.

- 2. You are now ready to begin machining!
 - Click PLAY and OK.
 - The **spindle will start**, and the program will begin to run!

Enjoy the Show!!

3 - 8: Creating the CNC File for the Opposite Side

- 1. When machining is finished, you will need to create the **CNC file** for the **left side** of your car.
- 2. In order to do this you are going to MANUALLY EDIT the original CNC program, by inserting a line of "code" that activates the MIRROR command.
- 3. Go to the EDITOR, use the *scroll wheel* on the mouse to scroll down the screen until you see the line MO3 S23000.
 - Note the **"S**" value depends on the type of CNC machine being used, *so this value may be different in your program!*
- 4. *Click* the cursor at the end of this line, then press the **ENTER** key on the *computer keyboard* to add a new line.
- 5. Now type **M71**, this is the "*code*" defining the **mirror in the Y axis command**.
- 6. *Click* on the **FILE** File menu at the top of the screen.
- 7. Select **SAVE AS** Save As.... DO NOT select **Save** by mistake.
 - Selecting SAVE by mistake will result in OVER-WRITING the original file!

Todd's CO2 Right Side.fnc ** Modified

G00 X0.310.1242.000 G01 Z29.000 F5000.0 Z24.000 Y-40.000 Z21.000

- 8. When the **SAVE AS** screen appears ...
 - Make sure Your CO2 Files folder is where it is being SAVED!
 - In the file name, change the word LEFT to RIGHT. (*Example: Todd's CO2 Right Side*)

Save As		2 🛛
Save in:	🗁 Todd's CO2 Fles	*
Tode's C	DOI2 Right Side, fnc	
File name:	Tossin CO2 Left Side	Sava
Save as typ	PR: Ranus CNC Rie (* FNC)	Cancel
3 - 9: D	Drilling Axle Holes	
1. 1	This is a good time to drill the two axle holes .	
	• The body still has a flat side to reference from	om.
	• The small dimple shows where the holes as	a ta ba
	• The small dimple shows where the holes at located on the machined side of the hillet	e to be
	iocated on the machined side of the billet.	
2. 5	See your teacher for specific instructions how	and
Ţ	where to drill your CO2 axle holes!	

Dimples that can be used to accurately locate the position for axle holes.

Flat base that can be used to as a reference base to accurately drill axle holes.

3 - 10: Rotating the Billet in the CO2 Car/F1 Car Fixture

1. Physically **rotate** the Balsa wood billet in the fixture by **180 degrees**.

- Billet will usually have to be removed to do this!
- Procedure will vary depending fixture that you are using!
- If you are have trouble *ASK your teacher for HELP*.
- 2. Make sure that **ALL** knobs and screws are **tight** before proceeding.

3 - 11: Machining the "LEFT" side of the Car Body

- 1. Make sure that the **VR Milling** software is loaded and that you have the file loaded for the **LEFT** side of your car!
- 2. The machine should be set to the ALL HOME

- 3. Click on the **AUTO TAB** Auto to enter the auto mode.
- 4. Click on the **STOP** button, followed by the **REWIND** button.

- This will ensure that the program starts from the beginning.
- 4. Click on the **PLAY** button to start the program.
 - The program will begin to run.
- Again a message will appear asking you to change to tool number 1, you should have already installed the 1/ 4" Ball End mill.
- 6. Sit back watch and listen to the machine **RUN**, keep your hand by the Emergency Stop button!
- 7. Your **finished design** should look some what like the one below!

Congratulations!

TEACHER RESOURCE PAGES

Tips and Hints Needed to Teach this Activity Successfully

To have success in teaching this activity we have put together some tips and hits to help you have success as a teacher.

This document by it self it will NOT promise instant success for your students. There are still many places where you will have to teach your students concepts NOT included in this document. (Examples: safety, basics of design, aerodynamic principles, tolerances and limitations, etc.)

It is very important to have dialog with your students through out this activity to make sure they have an understanding of the concepts being covered.

4 - 1: General Tips

- 1. Before you can even begin you must find to file **CO2 Car Template.des** and copy it in the **MY Documents folder** on ALL of the computers that you will have students working on.
- 2. Your students will be required to create a directory called **<Your Last Name> CO2 files** (*example: Todd's CO2 files*) to save all the files related to their CO2 Car. This directory can be located on the hard drive, network, floppy drive, USB drive, etc.
- 3. It is important that students save ALL files created in this activity in this folder. This will make your and your students lives much easier when trying to find and edit files. When finished students should have FOUR different files saved in this directory, see below.
 - Pro/Desktop file Todd's CO2.des
 - Stereo Lithography file Todd's CO2.stl
 - CNC files Todd's CO2 Right Side.fnc Todd's CO2 Left Side.fnc
- 4. It is VERY IMPORTANT that you work through this activity completely before trying it with students. By doing this you will find the following ...
 - 5. Is the CO2 Car Template located in the My Documents folder?
 - 6. How well do you know how to run and trouble shoot Pro/Desktop?
 - What will be the simplest way for students to install the CO2 billet?
 - Are the tool and material libraries set up correctly.
 - Do you know how to correctly install and setup a cutting tool?
 - Is the CO2 fixture set up correctly?
 - When and how do I want students to drill axle holes?
 - Where are the places your students will have problems?
 - Where will you need to spend extra time teaching concepts to your students?

4 - 2 : Pro/Desktop and CO2 Design Tips

- 1. It is very important that you spend some time teaching Pro/Desktop basics before starting this activity. Pro/D can be a very simple program to use, BUT if you have never been exposed to it, Pro/D can be very intimidating.
- 2. It would be a could idea to cover the following before starting this activity: workplanes, sketches, drawing tools, features tools, select tools, editing, etc.
- 3. It will be a very important to have a complete understanding of the loft feature tool in this activity.
- 4. This activity will guide every student step-by-step on how to design the exact same CO2 car in Pro/D.
- 5. We recommend that you have every student follow step-by-step how to complete the first car, upon completing that design give your students a set of design parameters and limitations that they must follow to design a second car of there own design.
- 6. Discuss design possibilities, such as changing profile shapes, affects of aerodynamics, and machine limitations.
- 7. After students have successfully created or modified a SECOND car that passes your inspection, you may let them move on to CNC file creation part of this activity.
- 8. You can create your own set of CO2 car limitations or obtain them from your state or National Technology Student Organizations (TSA).
- 9. It is important that you DONOT allow students to design something that is impossible to manufacture.
- 10. You will be using a 1/4" ball end mill (6.35mm), make sure it can reach all areas inj the design.

<u>4 - 3: Moving the Machine Head and Fitting the Cutting Tool</u>

- The position of the machine head (the cutting tool) can be manually controlled using Jog mode. In the "Control Panel" window, click the "Jog" tab to select Jog mode.
- 2. To change the position of the machine head quickly,click the [Jog] button until a straight arrow is displayed, signifying 'Jog Continuous' mode.
- 3. Click and drag the Jog Feed control knob to the top of the scale. The feedrate value is shown in the readout below the control knob.
- 4. The four cursor (arrow) keys, and the [Page Up] and [Page Down] keys on the keyboard, are used to control the X, Y and Z axes. Press and hold the appropriate key to move the required axis.

- 5. To change the position of the machine head incrementally, click the Jog button until the image changes from a single arrow to three small, stepped arrows, signifying Jog Step Mode.
- 6. Click and drag the Jog Feed control knob to adjust the increment. When you press the cursor keys the cutter will move by the amount set.
- 7. Jog the machine head to an appropriate position, then, fit the cutting tool. The procedure for this will vary depending on the machine type. See the machine manual for more detailed information on this procedure.

4 - 4: Installing the CO2 Car/F1 Car Fixture

The easiest method of holding the balsa wood billet in your CNC router is by using a fixture. Once set into position, the fixture allows billets to be accurately placed, offering the potential for small scale production of CO2 cars.

- 1. The alignment fork on the left of the fixture fits into the CO2 cartridge hole in the balsa wood billet. The tapered end of the billet is tightened against the bracket on the right side of the fixture.
- 2. It is essential that the jig is installed square (ie, at 90°) to the machine axes. When fitting and adjusting the position of the jig, use an engineers square with any available reference edges. Since the balsa wood billet is revolved 180° inside the fixture, any inaccuracies will be multiplied by two.
- 3. It may be possible to position the jig so the cutter can never hit the right side bracket (ie, the bracket lies outside the effective movement area of the cutting tool).
- 4. Fit the balsa wood billet in the jig as shown.

4 - 5: Creating a Work Offset for the CO2 Car/F1 Car Fixture

Offsets are the distances the cutter travels, from its 'Home' position to the point from which the program starts in X Y & Z. Now you are going to create an offset for the center line of the CO2/F1 Fixture. You will create a new offset, name it, and then set the X,Y and Z values.

1. Click on the **Tool and Offset Editing button**

2. Select the Work Offsets Tab.

Tool and Offset Editor Work Offsets Tooling Date

3. Click the "New Work Offset" button.

It is possible to store a number of offsets and swap between them for different jobs.

X Axis 0.000
X Axis Y Axis 0.000
X Axis X Axis

- 4. Click on the 'blank' offset that has been added to the list and type in **CO2 Car/F1 Car Fixture** for the description of the new offset.
- 5. Click the 'Activate' button <a>Activate to activate your new offset. The NEW offset is now active. NOTE, it highlighted in green.
- 6. Select the **jog continuous mode button** *intervention*, move the tool a few millimeters away from the alignment shaft.
- 7. Touch onto the alignment shaft at its smallest diameter. The fixture shown to the left is 12mm, other models may have a different diameter.
- 8. Select the **jog step mode button** for fine incremental movements and jog the cutter until it just touches the alignment fork. Place a thin strip of paper between the cutter and the alignment fork to help detect precisely when the cutter touches the fork.
- 9. With the cutter in the above position click on the Set datum offset from Current Position (Y axis) button.
- 10. Click the **Y Minus button** to indicate the correct side of the alignment fork the cutter is positioned.
- 11. Type in **9.175**, the sum of the radius of the alignment fork and the radius of the cutter (6 + 3.175 = 9.175). Click **OK** when done.
- 12. Click the **Jog tab** to go back to the jog mode.

13. Using the j**og keys**, move the tool towards you and away from the alignment fork. Use the 'Page Up' key to lift the tool above the fork, ensure that the tool is above the fork before proceeding to the next step.

- 14. Click on the MDI tab in the control panel and type Y0 (*zero not the letter O*)
- 15. Press Play on the file control.

- 16. The cutter will move to the Y position set previously. This should be directly over the centre of the location fork, if not the Y offset is incorrect, repeat the previous operation.
- 17. Using the jog keys in **jog step mode**, bring the nose of the cutter down so it just touches the section of the alignment shaft where the diameter is 12mm as shown.

- 18. With the cutter in the above position click on the **Set datum offset from current position (Z axis) button**.
- 19. Click the Z Plus button to indicate which side of the alignment shaft the cutter is positioned.
- 20. Type in **6mm**, the radius of the alignment shaft. Click the **OK** button when done.
- 21. Click the 'Jog' tab to go back to jog mode.
- 22. Using the jog keys, move the cutter so it just touches the side of the balsa wood billet.

- 23. With the cutter in the above position click on the "Set datum offset from current position (X axis)" button.
- 24. Click the X Minus button to indicate which side of the billet the cutter is positioned.
- 25. Type in **2.175** here. (The cutter radius 1mm) We deduct 1mm to account for the datum plate.
- 26. Click the **OK** button when done.
- 27. You have now successfully setup the CO2 Car/F1 Car fixture. It is a good idea to machine severals cars your-self before turning students loose on the machine.

When machining there are a few things to remember ...

- Ensure the cut plane is at least the cutter radius below the center line.
- Always ensure the car is located in the bottom left hand corner of the billet.
- Never cut a car unless you are sure the bore is in the correct position. **DO NOT MAKE THE PART as damage to the fixture may result.**
- With QuickCAM 3D set the raster angle to 90. With QuickCAM Pro set the Raster angle to 270.
- Always check that the tool path does not pass down the ends of the billet and collide with the fixtur

<u>4 - 6 : Troubleshooting CO2 Car/F1 Car Fixture Setup</u>

Why does my car have a ridge down the middle after it has been cut?

- *Problem 1* If the ridge is only evident on the top of the car then the cutter may have not passed beyond the center line and has left the tool radius visible.
- *Solution 1* Set the cut plane more than the cutter radius below the center line of the model and ensure the Z offset has been set when positioning the model in the block.
- *Problem 2* The tool fitted to the machine is a 6.35mm Cutter and the tool selected in the tool library is 6mm. This will cause the tool to be offset and create a ridge 0.35mm in size even when the offset is correct.
- *Solution* 2 Ensure the correct tool is loaded in the library and selected (edit the library if required)
- *Problem 3* The machine offset in Y locates the center of the bore in the car. This is the Y zero coordinate and is the point about which the car is indexed to cut the second side. If there is a step on both the bottom and the top of the car then measure the amount of the step.
- *Solution 3* The Y offset should be changed by half of the measured ridge. Open the tool offset window and write down the Y offset. Manually change the value by half the step measurement then make another car. Once you have a car with no ridge make sure you record the offset.

Why does my car have a ridge down its length that is bigger at one end than the other?

- *Problem* The fixture fitted to the machine is not correctly installed, most likely the fixture is NOT parallel to the machine table..
- *Solution* Align the fixture correctly following the instructions in the help tutorials.

4 - 7 : Contact Information and Disclaimer

Need further help?

You can contact Denford Customer Services for further help developing and machining your 3D solid models. Before contacting Denford for support, please read your hardware and software manuals and check the FAQ section on our website - www.denford.co.uk

When you request support, please be at your computer and CNC machine, with your hardware and software documentation to hand. To minimize delay, please be prepared to provide the following information:

- CNC Machine Serial Number (from the machine ID panel).
- Registered user's name / company name.
- The CNC machine control software name and version number.
- The wording of any error messages that appear on your computer screen, if applicable.
- A list of the steps that were taken to lead up to the problem.

Please note that on-site visits by our engineers may be chargeable.

Denford Contact Details:

Denford Inc. 815 West Liberty Street Medina, OH 44256 1-800-866-9750

Disclaimer:

Please note that due to nature of hardware and software developments, the specifications and features of the products featured in this guide can change without notice. The information contained in this guide is correct at the date of printing only - August, 2007.

No liability can be accepted by **Denford Limited** or **Crystal Creations & Educational Consulting** for loss, damage or injury caused by any errors in, or omissions from, the information supplied in this guide.

Denford Limited and Crystal Creations & Educational Consulting reserve the right to alter any specifications and documentation without prior notice. No part of this manual or its accompanying documents may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Denford Limited or Crystal Creations & Educational Consulting.